Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nucleic Acids Res ; 52(D1): D476-D482, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37986218

The incorporation of non-canonical amino acids (ncAAs) into proteins is a powerful technique used in various research fields. Genetic code expansion (GCE) is the most common way to achieve this: a specific codon is selected to be decoded by a dedicated tRNA orthogonal to the endogenous ones. In the past 30 years, great progress has been made to obtain novel tRNA synthetases (aaRSs) accepting a variety of ncAAs with distinct physicochemical properties, to develop robust in vitro assays or approaches for codon reassignment. This sparked the use of the technique, leading to the accumulation of publications, from which gathering all relevant information can appear daunting. Here we present iNClusive (https://non-canonical-aas.biologie.uni-freiburg.de/), a manually curated, extensive repository using standardized nomenclature that provides organized information on ncAAs successfully incorporated into target proteins as verified by mass spectrometry. Since we focused on tRNA synthetase-based tRNA loading, we provide the sequence of the tRNA and aaRS used for the incorporation. Derived from more than 687 peer-reviewed publications, it currently contains 2432 entries about 466 ncAAs, 569 protein targets, 500 aaRSs and 144 tRNAs. We foresee iNClusive will encourage more researchers to experiment with ncAA incorporation thus contributing to the further development of this exciting technique.


Amino Acid Sequence , Amino Acids , Databases, Protein , Proteins , Amino Acids/chemistry , Amino Acids/metabolism , Codon/genetics , Genetic Code , Proteins/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Internet
2.
Curr Opin Microbiol ; 68: 102158, 2022 08.
Article En | MEDLINE | ID: mdl-35660240

Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.


Optogenetics , Synthetic Biology , Light , Optogenetics/methods , Proteins , Synthetic Biology/methods
...